Domain of a Function

Dr. William J. Larson - http://MathsTutorGeneva.ch/

The **domain** of a function is the allowed values for the input variable, which is usually called *x*.

The domain is "all real *x*", which can also be written $x \in \mathbb{R}$, <u>except in the following cases</u>:

Cases	Examples	Domain of examples
1. The domain is specified	$f: \{(2, 3), (4, 5), (6, 7)\}$ $y = x^2, x \ge 0$	x = 2, 4, 6 $x \ge 0$
2. A graph: To find the domain, read it off the graph.		all real $x \mid 2 \le x \le 6$
3. Division by zero (To find the domain, set the denomina	tor $\neq 0.$) $y = \frac{3}{x-2}$ $y = \frac{1}{x^2 - 4}$	$x - 2 \neq 0$, which gives all real $x \neq 2$ $x^2 - 4 \neq 0$, which gives all real $x \neq \pm 2$
4. <u>square</u> roots of negative numbers (To find the domain Set the argument (i.e. the stuff <u>inside</u> the root) ≥ 0).	$y = \sqrt{x - 1}$ $y = \sqrt{x^2 - 9}$ $y = \sqrt{x^2 - 9}$	$x - 1 \ge 0$, which gives all real $x \ge 1$ $x^2 - 9 \ge 0$, which gives all real $x \mid x \le -3$ or $x \ge 3$
Set the argument (i.e. the stuff <u>inside</u> the root) ≥ 0).	$y = \sqrt{x^2 - 9}$ $y = \sqrt[3]{x}$	$x^2 - 9 \ge 0$, which gives all real $x \mid x \le -3$ or $x \ge 3$ all real x (Because the rule doesn't apply to odd roo